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In the current study, a production and distribution network (PDN) 
is formulated to deliver the products to both inland and outland 
customers in the least amount of time and optimize the total profit 
of the network, simultaneously. The proposed network is a multi-
stage PDN with multi suppliers, multi producers, multi entrepots, 
multi retailers, and multi inland and outland customers with multi-
time period horizon with allowable shortage. A mixed integer-
programming model is designed to minimize total cost of the 
system and minimize total delivery lead time. We applied a novel 
heuristic method called selective firefly algorithm (SFA) in order 
to solve several sized, especially real-world, instances. Finally, the 
performance of the proposed algorithm is examined by solving 
several sized instances. The results indicated that the proposed 
algorithm is of higher performance. 
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1. Introduction and Literature 
Review 1 

The integrated production distribution network 
(PDN) as one of the most important optimization 
problems in supply chain management has 
attracted the attention of many researchers (1). 
The comprehensive form of a PDN includes 
supplier, producer, distributer, retailer, and 
customer that are scarcely considered in the 
literature. 
Demand and delivery lead time can be two main 
parameters that are under uncertainty in the major 
of supply networks. Covering the uncertainty of 
these factors can be profitable to increase the 
                                                   

Corresponding author: Mohammad Bagher Fakhrzad 
*

Email: mfakhrzad@yazd.ac.ir 
Received 5 June 2018; revised 6 October 2018; accepted 22 October 
2018 

customer satisfaction. The stochastic assumption 
of some parameters in both constraints and 
objective functions, considering probability 
distribution for uncertain parameters, is rarely 
applied. Chance constraint is a method for 
covering the uncertainty of the mathematical 
models. This approach transforms the stochastic 
model to a deterministic form, where some 
parameters of the model are uncertain and 
constraints are required to parallel to specified 
confidence level (2).  
There are several factors, such as limited 
production capacity of the facilities and high 
fixed transportation cost, which cause delay in 
delivering the products to customers. In these 
conditions, part of the customers’ demands may 
be considered as backorder; however, this 
assumption is not used in many of the former 
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studies. 
Therefore, in the problem under study, there are 
three main decisions to make: considering a 
comprehensive PDN from supplier to final 
customer, covering the customers’ demands, and 
delivery lead time under probable conditions with 
allowable shortage. 
Altiparmak et al. proposed a three-stage PDN and 
designed a mathematical model for the network. 
They introduced a new solution approach based 
on genetic algorithm (GA) to find near-optimum 
solutions (3). Boudia et al. presented a PDN and 
designed a mixed integer linear programming 
model (MILPM) with minimizing the total cost 
of the system for the proposed network. (4). 
Thanh et al. presented a PDN with multi-product 
and multi-planning horizon. They proposed a 
MILPM to minimize total cost of the system (5). 
Kazemi et al. introduced a PDN and proposed a 
MILP model to minimize the production, 
inventory, and transportation cost of the system 
(6). Calvete and Galé introduced a multi-
objective planning for a PDN with multi 
producers, multi distribution centers, and multi 
retailers (7). 
Peidro et al. studied a PDN with multi 
transportation types and multi time period 
horizons. The proposed network is formulated in 
the form of MILPM to minimize total cost of the 
system. Some parameters, such as demand and 
transport lead time, are assumed under 
uncertainty and apply fuzzy theory to cover these 
uncertainties (8). Cardona-Valdés et al. proposed 
a PDN and developed a stochastic optimization 
model under demand uncertainty (9). Wang et al. 
studied a one-stage PDN with stochastic demand. 
They designed a stochastic MILPM to maximize 
total profit of the system. They applied GA with 
efficient greedy heuristic to solve the problem 
(10). Amorim et al. presented a PDN with 
perishable products. They developed a simple 
hybrid genetic heuristic to solve the proposed 
model (11). Kadadevaramath et al. developed a 
two-stage PDN with single period horizon (12). 
Varthanan et al. studied an integrated PDN with 
stochastic demand.  They considered a MILPM to 
minimize the total cost of the network (13).  
Zamarripa et al. presented a PDN with multi time 
period. They designed a MILPM to minimize 
total cost of the system. The GA is used to solve 
the model (14). Bilgen and Çelebi introduced a 
MILP model for a PDN and solved the problem 
using simulation method (15). Kumar and Tiwari 
considered a PDN with multi time periods. They 
modeled the proposed system as mixed integer 

nonlinear problem (MINLP) by minimizing the 
network cost along with determining facility 
location and capacity (16). Latha Shankar et al. 
presented a PDN and designed a MINLP to 
minimize the total cost and maximize the fill rate 
(17). Liu and Papageorgiou presented a two-stage 
PDN with multi time period horizons. They 
proposed a MILPM framework to optimize the 
proposed network (18). Nasiri et al. proposed a 
multi-stage PDP with uncertain demand. They 
designed a mathematical programming model to 
minimize the total cost of the network. A 
heuristic method based on GA is proposed to 
solve the model (19). Bashiri and Rezaei 
proposed a relocation model in a supply chain 
network under uncertain environment. They 
applied a two-stage stochastic approach, the 
sample average approximation approach 
integrated with the Bender's decomposition 
approach to improve their model results (20).  
Abraham et al. introduced a PDP with multi time 
periods. They used B&B method applying 
LINGO solver to solve the small instances, and a 
GA approach is applied to solve the larger 
instances (21). Ghodratnama et al. presented a 
robust mathematical model for a p-hub covering 
problem to minimize the total cost of the system. 
They applied a robust optimization theory to 
solve the model and compare the results to 
determined values by deterministic MILP model 
(22). Khalifehzadeh et al. presented a multi-stage 
PDN with multiple time periods. They designed a 
MILPM to minimize the total cost of the system 
and maximize the reliability of transportation 
system (1). Alizadeh Afrouzy et al. presented a 
multi-stage PDN and formulated a multi-
objective MILPM to maximize the total profit of 
the system, the satisfaction level of customers, 
and production of the developed and new 
products (23). Sadeghian developed an inventory 
model with stochastic and irregular demands. The 
objective functions of the model include expected 
positive inventory level, expected negative 
inventory level, and inventory confidence level 
(24). Hosseini-Motlagh et al. introduced a MILP 
model for blood supply chain network design 
with multiple time periods. They used a robust 
programming approach to cover the uncertainty 
of the network. They applied two criteria 
including mean and standard deviation of 
constraint violations to examine the performance 
of the robust approach (25). 
Birim studied a PDN with several transportation 
vehicles at different operational costs. The 
proposed system is formulated in the form of 
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MILPM to minimize total transportation costs 
and the fixed costs of the vehicles (26). Chan et 
al. studied a two-stage PDN with uncertain 
demand and multi truck types with different 
hiring cost. They designed a multi-objective 
mathematical model and used a heuristic 
algorithm along with the non-dominated sorting 
GA (NSGA-II) to produce much better solutions 
(27). Fathian et al. considered a two-stage PDN 
with uncertain customers’ demands (28). Ma et 
al. proposed an integrated two-stage PDN with 
uncertain transportation costs. The objective of 
the proposed model minimizes the total global 
cost of the network. They developed a hybrid 
two-stage GA to solve the proposed model (29). 
Govindan and Fattahi proposed a PDN with 
uncertain customers’ demands and designed a 
MILPM to minimize the total cost of the system 
(30). Hasani proposed a mathematical model for 
an electric power supply chain network under 
uncertainty with minimizing the total cost of the 
system. The proposed model is solved by 
Benders decomposition algorithm. The 
performance of solution algorithm is examined 
using data from the Tehran Regional Electric 
Company (31). 
Jabbarzadeh et al. introduced a PDN and 
designed a MILPM for the proposed network to 
minimize the total cost of the system. The 
customers’ demands are assumed under 
uncertainty (32). Fahimnia et al. introduced a 
multi-stage PDN and proposed a multi-objective 
MINLP to minimize total cost of the system and 
minimize the total carbon emissions. They 
applied three metaheuristic algorithms, GA, 
Simulated Anealing (SA), and Cross Entropy 
(CE), to solve the model (33).  
In the current study, a comprehensive PDN is 
considered including multi suppliers, producers, 
potential entrepots, retailers, and inland and 
outland customers with multiple time periods and 
allowed shortage. The customers are classified 
based on their shortage costs as the highest 
priority is given to customers with the highest 
unit shortage cost. We formulate the proposed 
PDN as a mathematical programming model. The 
proposed model is validated by applying several 
instances in different sizes. Small-sized instances 
are solved by LINGO solver. Furthermore, we 
proposed a novel algorithm based on FA called 
SFA for solving large-sized instances.  
The paper is organized as follows. In Section 2, 
the problem under study is described. In Section 

3, the mathematical model of the problem and 
uncertainty concepts of the proposed network are 
presented. In Section 4, heuristic method based 
on FA is applied. In Section 5, the results of 
several numerical instances are examined. In 
Section 6, the paper is concluded. 
 

2. Problem Description 
The considered PDN includes suppliers, 
producers, entrepots, retailers, and customer 
zones. The required raw materials are transferred 
from the suppliers to producers. The main 
purposes of the proposed PD system are tactical 
decisions to activate or inactivate an entrepot in 
each period and operational decisions to 
distribute the commodities through the network. 
Each entrepot includes an entrance for receiving 
the products and a dock for arranging the 
products, transmitting them to vehicles, and 
transferring them to customers. It is assumed that 
there is not any fixed storage in the entrepots and 
products have only a short delay. The customers 
are divided into two generic classes consisting of 
internal and external that are related to inland and 
outland customers, respectively.  
Delivery of the products to consumers in the 
shortest time is an efficacious factor in increasing 
the satisfaction level of consumers. Nevertheless, 
in some real world networks, having shorter 
delivery time needs better transportation systems 
with higher cost. In the proposed network, we 
assume several transportation systems with 
different delivery time with an inverse relation 
between delivery time and transportation cost. 
The schematic presentation of the proposed 
network is demonstrated in Fig 1. Each supplier 
is able to produce different kinds of raw 
materials, and each facility can produce all types 
of products. Unmet customers’ demands are 
backordered; however, the whole demands must 
be met by the last time period. Several 
transportation systems with different lead times 
are assumed in all parts of the network. Each 
transportation system has restricted capacity; 
however, it can move several times at each time 
period in a given route.  
To achieve a reasonable cost of the system and an 
adequate delivery lead time in whole network, we 
consider two objectives including minimizing the 
total cost of the system and minimizing the total 
delivery lead time. 
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Fig. 1. Structure of the concerned multi stage logistics network 

 
The proposed supply chain problem can be 
defined as follows: 
 
Given the input data: 

- Number of suppliers, plants, entrepots, retails, 
inland and outland customers; 

- Variety of raw material and products; 
- Required raw material for producing each 

product; 
- producing, transporting, and holding cost of 

products, 
- Backorder cost of each product, 
- Time period horizon, 
- Regular time and overtime in each period, 
- Required setup and process time for producing 

the products, 
- Delivery lead time,  
- Volume of each raw material and product, 
- Storage capacity of each plant and retail store, 
- Customers’ demands, 

 
The key variables to be determined: 

- Active entrepots and retail stores in each period,  
- Quantity of transferred raw material from each 

supplier to producers in each period, 
- Quantity of manufactured product by each 

producer in each period, 
- Quantity of transferred product from each active 

entrepot to active retail store and outland 
customers by each transportation system, 

- Quantity of transferred product from each active 
retail store to inland customers by each 
transportation system, 

- Quantity of backorder demand of each inland and 
outland customer in each period.  
 
 

 
3. Mathematical Formulation 

The main objective of the proposed network is to 
minimize the total cost. However, one of the most 
important factors in improving the customer 
satisfaction rate is delivery of the products in the 
least amount of time. In the current study, we 
consider multi transportation systems with fixed 
and variable transportation costs dependent on 
elapsed time to deliver the products from 
producers to final customers. Therefore, there are 
two conflicting objectives including minimizing 
the total cost of the system and minimizing the 
delivery lead time. The features of the proposed 
model are described in detail as follows: 
 
3-1. Assumptions 
The assumptions of the proposed model are as 
follows: 
- Each plant can receive raw material from 

several suppliers. 
- Each plant is able to produce all ranges of 

products. 
- All plants can produce products of the same 

quality.  
- Each entrepot receives products from several 

plants. 
- Products are transported by limited capacity 

vehicles. 
- There are several transportation systems to 

deliver the products to customers. 
- Retail stores are allowed to keep inventories 

at the end of each period. 
- Customer demand can be fulfilled by several 

retail stores. 
- Selling price for a specific product can be 

dissimilar in different customer zones. 
- Backorder is allowed and unfulfilled 
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demands in a period can be carried over to 
the next period. 
 

3-2. Notations 
The following notations have been used to solve 
the proposed model: 

 
Sets, Indices: 

퐼 suppliers indexed by 푖 ∈ {1,… , 퐼} 
퐽 plants indexed by 	푗 ∈ {1,… , 퐽} 
퐾 potential entrepots indexed by 푘 ∈ {1,… , 퐾} 
퐷 potential retail stores indexed by 푑 ∈ {1,… , 퐷} 
퐶 inland customer zones indexed by 푐 ∈ {1,… , 퐶} 
퐶  outland customer zones indexed by	푐 ∈ {1,… , 퐶 } 
푄 transportation systems indexed by 푞 ∈ {1,… , 푄} 
푅 raw materials indexed by	푟 ∈ {1,… , 푅} 
푃 products indexed by 푝 ∈ {1,… , 푃} 
푇 time periods indexed by 푡 ∈ {1, … , 푇} 

Parameters: 
푟푡푖푚푒  available regular time of plant 푗 in period 푡 
표푡푖푚푒 	

	
 available overtime of plant 푗 in period 푡 

푝푡  processing time for producing product 푝 in plant 푗 
푠푡  set-up time for producing product 푝 in plant	푗 
푠푐  set-up cost for producing product 푝 in plant	푗 in period 푡 
푟푝	  unit price of raw material 푟 at supplier 푖 in period 푡 
푟푚푐  unit production cost of product 푝 at a regular time of period 푡 
표푚푐  unit production cost of product 푝 in overtime of period 푡 
푙푡푝	  the time of shipping each product from plant 푗 to entrepot 푘 by transportation type 푞 

푙푡푝  the time of shipping each product from entrepot 푘 to retail store 푑 by transportation type 
푞 

푙푡푝  the time of shipping each product from retail store 푑  to inland customer 푐  by 
transportation type 푞 

푙푡푝  the time of shipping each product from entrepot 푘  to outland customer 푐  by 
transportation type 푞 

푎푡		 average time for delivering the products to inland customer  
푎푡 	

	 average time for delivering the products to outland customer  
푟푓푡푐 	  fixed transportation cost from supplier 푖 to plant 푗 in period 푡 
푟푢푡푐	  unit transportation cost of raw material 푟 from supplier 푖 to plant 푗 in period 푡  
푝푓푡푐

	
 fixed transportation cost from plant 푗 to entrepot	푘 by transportation type 푞 in period 푡 

푝푢푡푐
	
 unit transportation cost of product 푝 from plant 푗 to entrepot	푘 by transportation type 푞 

in period 푡 

푝푓푡푐  fixed transportation cost from entrepot 	푘 to retail store 푑  by transportation type 푞  in 
period 푡  

푝푢푡푐  unit transportation cost of product 푝 from entrepot	푘 to retail store 푑 by transportation 
type 푞 in period 푡 

푝푓푡푐  fixed transportation cost from retail store 푑 to inland customer zone 푐 by transportation 
type 푞 in period 푡  

푝푢푡푐  unit transportation cost of product 푝 from retail store 푑 to inland customer zone 푐  by 
transportation type 푞 at in period 푡 

푝푓푡푐  fixed transportation cost from entrepot	푘 to outland customer zone 푐  by transportation 
type 푞 in period 푡  

푝푢푡푐  unit transportation cost of product 푝 from entrepot 	푘 to outland customer zone 푐  by 
transportation type 푞 in period 푡 

푣푟  volume of Raw material 푟 
푣푝  volume of product	푝 
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푑푒푚	  demand of inland customer 푐 for product 푝 in period 푡  
푑푒푚  demand of outland customer 푐  for product 푝 in period 푡  
ℎ푐푟  holding cost of each raw material 푟 in plant 푗 in period 푡 
ℎ푐푝	  holding cost of each product 푝 in plant 푗 in period 푡 
ℎ푐푝

	
	 holding cost of each product 푝 in retail store 푑 in period 푡 

푛푢  required raw material 푟 for producing a product 푝 
푐푎푝푣 capacity of each vehicle 
푐푎푝푓  storage capacity of plant 푗 
푐푎푝푟  storage capacity of retail store 푑 
푎푐푐  activation cost of entrepot	푘 in period 푡 
푏표푐 	  backordering cost of each product 푝 for inland customer zone 푐 in period 푡 
푏표푐  backordering cost of each product 푝 for outland customer zone 푐  in period 푡 
푀 a positive large number 

 
Decision variables: 

푋 	  product 푝 produced by plant 푗 in regular time of period 푡 
푋

	
	 product 푝 produced by plant 푗 in overtime of period 푡 

푅푆 	
	
	 raw material 푟 Procured from supplier 푖 to plant 푗 in period 푡 

푃푆 	  product 푝 shipped from plant 푗 to entrepot	푘 by transportation type 푞 in period 푡 
푃푆  product 푝 shipped from entrepot	푘 to retailer 푑 by transportation type 푞 in period 푡 

푃푆  product 푝 shipped from retailer 푑 to inland customer zone 푐 by transportation type 푞 in 
period 푡 

푃푆  product 푝 shipped from entrepot	푘 to outland customer zone 푐  by transportation type 푞 
in period 푡 

푊 	  1 if product 푝 is manufactured by plant 푗 in period 푡, 0 otherwise 
푌	  1 if entrepot	푘 is activated in period 푡, 0 otherwise 

푅푆푈 	
	
	 remaining amount of raw material 푟 in plant 푗 at the end of period 푡 

푃푆푈 	  remaining amount of product 푝 in plant 푗 at the end of period 푡 
푃푆푈

	
	 remaining amount of product 푝 in retailer zone 푑 at the end of period 푡 

퐵퐶 	
	
	 backorder level of product 푝 for inland customer 푐 in period 푡 

퐵퐶  backorder level of product 푝 for outland customer 푐  in period 푡 
푅푁푉	  Quantity of moving a vehicle from supplier 푖 to plant 푗 in period 푡  

푃푁푉	
	

	 Quantity of moving a vehicle of transportation type 푞  from plant 푗  to entrepot 	푘  in 
period 푡 

푃푁푉  Quantity of moving a vehicle of transportation type 푞 from entrepot	푘 to retail store 푑 in 
period 푡 

푃푁푉  Quantity of moving a vehicle of transportation type 푞  from retail store 푑  to inland 
customer zone 푐 in period 푡 

푃푁푉  Quantity of moving a vehicle of transportation type 푞  from entrepot 	푘  to outland 
customer zone 푐  in period 푡 

 
3-3. Formulation of the model 
The optimal or near-optimal sales quantity, 
production rate, and total delivery lead time are 
obtained using the following mathematical 

model, which minimizes the total cost (푀푖푛 	) 
and minimizes the total delivery lead time 
( 푀푖푛 ) of the proposed network, 
simultaneously.
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푀푖푛 	= (푅푆 		 . 푟푝
∀∀∀∀

)
∀

+ (
∀∀∀

푊 	 . 푠푐 ) + (
∀∀∀

푋 	 . 푟푚푐

+ 푋
	
	. 표푚푐 ) + (

∀∀∀

푅푆푈 	 . ℎ푐푟 ) + (
∀∀∀

푃푆푈 	 . ℎ푐푝 )

+ (
∀∀∀

푃푆푈
	
	. ℎ푐푝 ) + (푅푁푉	 . 푟푓푡푐 	

	
)

∀∀∀∀

+ (푅푆 	 . 푟푢푡푐 	
	

∀∀∀∀

)
∀

+ 푃푁푉 	 . 푝푓푡푐
	

∀
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∀∀∀
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∀∀∀∀
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∀
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∀
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∀∀∀

(푃푆
	

	. 푝푢푡푐
∀∀∀∀

)
∀

+ 푃푁푉 	
	 . 푝푓푡푐

∀

+
∀∀∀

(푃푆
	

	. 푝푢푡푐 )
∀∀∀∀∀

+ 푃푁푉
	

	
. 푝푓푡푐 +

∀∀∀∀

(푃푆
	

	
. 푝푢푡푐

∀∀∀∀

)
∀

+ (푌	 . 푎푐푐 )
∀∀

+ 퐵퐶 	
	
	. 푏표푐 	 + 퐵퐶

	

	. 푏표푐
∀∀∀∀∀∀

 

(1) 

푀푖푛 = (푃푆 . 푙푡푝 	 )
∀

	
∀∀∀

+
∀

(푃푆 . 푙푡푝 	)
∀

	
∀∀∀∀

+ (푃푆 . 푙푡푝 	)
∀
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∀
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∀
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∀
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(2) 

S.t:  

푊 	 . 푠푡 + (푋 	
∀∀

. 푝푡 ) ≤ 	푟푡푖푚푒 ,			∀푗, 푡 (3) 

(푋 	 .
∀

푝푡 ) ≤ 	표푡푖푚푒 ,			∀푗, 푡 (4) 

푋 	 ≥ 푋 	 ,			∀푗, 푝, 푡 (5) 
푋 	 +푋 	 ≤ 푊 	 .푀,			∀푗, 푝, 푡 (6) 

푅푆 	 	 = 푋 	 . 푛푢	 	 + 푅푆푈 	 	
∀∀∀

,				∀푗, 푟 (7) 

푅푆 	 	 + 푅푆푈 ( )
	 = 푋 	 . 푛푢	 	 + 푅푆푈 	 	

∀∀∀

,				∀푗, 푟, 푡 > 1 (8) 

푋 	 +푋 	 = 푃푆 	

∀∀

+ 푃푆푈 	 ,			∀푗, 푝 (9) 

푋 	 +푋 	 +푃푆푈 ( )
	

	
	 = 푃푆 	

∀∀

+푃푆푈 	 ,			∀푗, 푝, 푡 > 1 (10) 

푃푆
∀∀

= 푃푆
∀∀

+ 푃푆
∀∀

,			∀푘, 푝, 푡 (11) 

푃푆
∀∀

= 푃푆 + 푃푆푈
∀∀

,			∀푑, 푝 (12) 

푃푆
∀∀

+ 푃푆푈 ( ) = 푃푆
∀∀

+푃푆푈 ,			∀푑, 푝, 푡 > 1 (13) 
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푃푆
∀∀

+ 퐵퐶 	 = 푑푒푚	 ,			∀푐, 푝 (14) 

푃푆
∀∀

+ 퐵퐶 	 = 푑푒푚	 + 퐵퐶 ( )
	 ,			∀푐, 푝, 푡 > 1 (15) 

푃푆
∀∀

= 푑푒푚	 + 퐵퐶 ( )
	 ,			∀푐, 푝 (16) 

푃푆
∀∀

+ 퐵퐶 = 푑푒푚 ,			∀푐 , 푝 (17) 

푃푆
∀∀

+퐵퐶 = 푑푒푚 +퐵퐶 ( ),			∀푐 , 푝, 푡 > 1 (18) 

푃푆
∀∀

= 푑푒푚 +퐵퐶 ( ),			∀푐 , 푝 (19) 

(푅푆 	 .
∀

푣푟 ) ≤ 푅푁푉	 . 푐푎푝푣,			∀푖, 푗, 푡 (20) 

(푃푆 	 .
∀

푣푝 ) ≤ 푃푁푉 	 . 푐푎푝푣,			∀푗, 푘, 푡, 푞 (21) 

(푃푆 . 푣푝 )
∀

≤ 푃푁푉 . 푐푎푝푣,			∀푘, 푑, 푡, 푞 (22) 

(푃푆 . 푣푝 )
∀

≤ 푃푁푉 . 푐푎푝푣,			∀푑, 푐, 푡, 푞 (23) 

(푃푆 . 푣푝 )
∀

≤ 푃푁푉 . 푐푎푝푣,			∀푘, 푐 , 푡, 푞 (24) 

(푅푆푈 	 . 푣푟)
∀

+ (푃푆푈 	 . 푣푝)
∀

≤ 푐푎푝푓 ,			∀푗, 푡 (25) 

(푃푆푈
	
	. 푣푝)

∀

≤ 푐푎푝푟 ,			∀푑, 푡 (26) 

	푃푆
∀∀∀

≤ 푌	 .푀,			∀푘, 푡 (27) 

푋 	 , 푋
	
	 ≥ 0, 퐼푛푡푒푔푒r,   ∀푗, 푝, 푡       

 
(28) 

푅푆 	
	
	, 푃푆 	 , 푃푆 , 푃푆 , 푃푆 ≥ 0, 퐼푛푡푒푔푒푟,			∀푖, 푗, 푘, 푑, 푐, 푐 , 푟, 푝, 푡, 푞 

푅푆푈 	
	
	, 푃푆푈 	 , 푃푆푈

	
	 ≥ 0, 퐼푛푡푒푔푒푟,			∀푗, 푑, 푟, 푝, 푡 

푅푁푉 	 ,	푃푁푉 	
	

	, 푃푁푉 , 푃푁푉 , 푃푁푉 ≥ 0, 퐼푛푡푒푔푒푟,			∀푖, 푗, 푘, 푑, 푐, 푐 , 푡, 푞  
퐵퐶 	

	
	, 퐵퐶 ≥ 0, 퐼푛푡푒푔푒푟,				∀푐, 푐 , 푝, 푡 

푊 	 , 푌	 ∈ {0, 1},			∀푗, 푘, 푝, 푡    (29) 
 
The objective function (1) is to minimize the total 
cost of the system including purchasing cost of 
raw material, setup cost of the production lines, 
manufacturing cost of the products at a regular 
time and overtime of each period, holding cost of 
the raw material and products in production 
facilities, holding cost of the products in retailers, 
fixed and variable costs of transferring raw 
material from suppliers to production facilities, 
fixed and variable costs of transferring the 
products to inland and outland customers, 
activation cost of entrepots and retailers, and 

backordered cost of inland and outland 
customers. The objective function (2) is to 
minimize the total delivery lead time from 
suppliers to final customers with regard to 
transportation type and amount of backordering 
demand of inland and outland customers. The 
first five parts of this equation are related to 
required time for delivering raw materials and 
products from suppliers to final customers, and 
the last two parts are related to delay elapsed for 
delivering backordered. 
Constraints (3) and (4) ensure that elapsed setup 
and production time in each production facility 
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do not exceed the available regular time and 
overtime in each period. Constraint (5) controls 
that overtime in production facilities is not 
activated before regular time. Constraint (6) 
controls that each production facility can 
manufacture each product if the corresponding 
binary variable takes value of one. Constraints (7) 
and (8) specify the balanced inventory of the raw 
material in production centers. Constraints (9) 
and (10) specify the balanced inventory of the 
products in production centers. Constraint (11) 
specifies the balanced inventory of the products 
in activated entrepots. Constraints (12) and (13) 
specify the balanced inventory of the products in 
activated retailers. Constraints (14) and (15) 
represent the backorder balance equation in each 
inland customer’s site. Constraint (16) is 
concerned with the backorder balance equation of 
inland customers’ demand in the last period. 
Constraints (17) and (18) represent the backorder 
balance equation in each outland customer’s site. 
Constraint (19) is concerned with the backorder 
balance equation of outland customers’ demand 
in the last period. Constraint (20) specifies the 
amount of required vehicles to transport raw 
material from material suppliers to production 
facilities with considering capacity of the 
vehicles. 
Constraints (21-24) specify amount of required 
vehicles to transport manufactured products in 
the network with considering capacity of the 
vehicles. Constraints (25) and (26) control the 
storage capacity of production facilities and 
retailer sites, respectively. Constraint (27) 
controls the activation of each potential entrepot. 
Constraints (28) and (29) define non-negativity, 
integer and binary status of decision variables, 

respectively. 
 
3-4. Stochastic parameters of the model 
In practice, some parameters of PDNs are 
uncertain. Customer demand and delivery lead 
time are typically uncertainly quantified in supply 
chain procedures (34). In such situations, 
traditional models with constant parameters 
cannot be suitable to cover the uncertainty of 
PDSs. In the current study, some parameters of 
the proposed network including amount of inland 
and outland customers’ demands and delivery 
lead time are assumed uncertain. These two 
parameters are stochastic or probabilistic in 
nature (2). Therefore, the proposed model is 
changed to stochastic form in the following 
sections. 
 
3-4-1. Delivery lead time 
The real delivery lead time may differ from the 
planned delivery lead time due to transportation 
mode and many other factors which cause delay 
in delivery time. Hence, delivery lead time is 
probabilistic in real cases. In the current study, 
delivery lead time is assumed to be probabilistic 
with known mean and standard deviation. The 
mean and standard deviation data are based on 
historical evidences. The following steps are 
applied to convert the stochastic delivery lead 
time to deterministic form: 
Step1: Assume that 퐿 is the aspired time related 
to the second objective function (푚푖푛 ). 
This aspiration level can be obtained by realizing 
the optimal solution of solving delivery lead time 
objective, separately (Eq. 30). 

 

퐿 = (푃푆 . 푙푡푝 	 )
∀

	
∀∀∀

+
∀

(푃푆 . 푙푡푝 	)
∀

	
∀∀∀∀

+ (푃푆 . 푙푡푝 	)
∀

	
∀∀∀∀

+ (푃푆 . 푙푡푝 	)
∀

	
∀∀∀∀

+ (퐵퐶 	 . 푎푡 )
∀

	
∀∀

+ (퐵퐶 	 . 푎푡 	)
∀

	
∀∀

 
(30) 

Step2: The mean value of delivery lead time is replaced into the second objective function. Therefore, Eq.2 
is changed as follows (Eq. 31). 

 (31) 
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푀푖푛 = (푃푆 . 휇 	 )
∀

	
∀∀∀

+
∀

(푃푆 . 휇 	)
∀

	
∀∀∀∀

+ (푃푆 . 휇 	)
∀

	
∀∀∀∀

+ (푃푆 . 휇 	)
∀

	
∀∀∀∀

+ (퐵퐶 	 . 푎푡 )
∀

	
∀∀

+ (퐵퐶 	 . 푎푡 )
∀

	
∀∀

 

Step3: With using chance constraint procedure, the probabilistic equation for delivery lead time objective 
function is written as in inequality Eq. 32. 

 

푃 퐿 > (푃푆 . 휇 	 )
∀

	
∀∀∀

+
∀

(푃푆 . 휇 	)
∀

	
∀∀∀∀

+ (푃푆 . 휇 	)
∀

	
∀∀∀∀

+ (푃푆 . 휇 	)
∀

	
∀∀∀∀

+ (퐵퐶 	 . 푎푡 )
∀

	
∀∀

+ (퐵퐶 	 . 푎푡 )
∀

	
∀∀

≤ 훼 ⇒ 
(32) 

 
where 훼  is risk level for the obtained value of lead time to be greater than the aspired level.  
Using chance constraint procedure presented by (35), the probabilistic inequality (32) is converted to 
deterministic form as follows (Eqs. 33-35): 
 

푃 퐿 ≤ (푃푆 . 휇 	 )
∀

	
∀∀

∀

+
∀

(푃푆 . 휇 	)
∀

	
∀∀∀∀

+ (푃푆 . 휇 	)
∀

	
∀∀∀∀

+ (푃푆 . 휇 	)
∀

	
∀∀∀∀

+ (퐵퐶 	 . 푎푡 )
∀

	
∀∀

+ (퐵퐶 	 . 푎푡 )
∀

	
∀∀

≥ (1 − 훼 ) ⇒ 
(33) 

퐹 (푃푆 . 휇 	 )
∀

	
∀∀∀

+
∀

(푃푆 . 휇 	)
∀

	
∀∀∀∀

+ (푃푆 . 휇 	)
∀

	
∀∀∀∀

+ (푃푆 . 휇 	)
∀

	
∀∀∀∀

+ (퐵퐶 	 . 푎푡 )
∀

	
∀∀

+ (퐵퐶 	 . 푎푡 )
∀

	
∀∀

≥ (1 − 훼 ) ⇒ 
(34) 

(푃푆 . 휇 	 )
∀

	
∀∀∀

+
∀

(푃푆 . 휇 	)
∀

	
∀∀∀∀

+ (푃푆 . 휇 	)
∀

	
∀∀∀∀

+ (푃푆 . 휇 	)
∀

	
∀∀∀∀

+ (퐵퐶 	 . 푎푡 )
∀

	
∀∀

+ (퐵퐶 	 . 푎푡 )
∀

	
∀∀

≥ 퐹 (1 − 훼 )

= 푀푖푛∗  (35) 
 
where 퐹 	푎푛푑	퐹  are cumulative distribution 
function and inverse cumulative distribution 

function for random delivery lead time at given 
risk level 훼 , respectively. 퐹 (1 − 훼 )  is 
replaced by optimal aggregated delivery lead 
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time obtained when entire resources and 
constraints are fully consumed considering the 
objective 푀푖푛  individually (푀푖푛∗ ) (2). 
Therefore, Eq. 35 is added to the proposed model 
as a constraint. 
 
3-4-2. Customers’ demands 
Demand uncertainty is an indisputable fact in the 
major real cases. Prediction of demand to obtain 
an acceptable production and distribution 
planning is an important issue in all PDNs. 
Nevertheless, the demand in several studies is 
considered as a deterministic parameter. In some 
other studies, the demand is assumed under 
uncertainty with a specified distribution function, 
and it is simplified and converted to deterministic 
form with considering the mean values. 
Stochastic models can be more appropriate to 
tackle these uncertainties in orders (36). Since 
error in forecasting demands is often considered 
to be normally distributed, the demands will be 
assumed to be normal (37). Thus, in the current 

study, the demand pattern is supposed as 
stochastic with a specified normal distribution. 
With considering both inland and outland 
customers’ demand in the current network, some 
related constraints in the proposed model are 
transferred to stochastic form. A relevant 
technique to convert the stochastic constraints 
into equivalent deterministic constraints is chance 
constraint technique ((38), (2)). Consequently, we 
apply multi-chance constraint to cover these 
uncertainties. 
It is assumed that parameters of the demand of 
inland customers ( 푑푒푚	 ) and outland 
customers (푑푒푚 ) follow independent normal 
distribution 푁~(휇 ,		 휎 )  and 
푁~(휇 ,		 휎 ) , respectively. The 

mean and standard deviation data are calculated 
based on historical evidences. The additional 
notations used are as follows:  

 
휇  Expected value of inland customer’s demand 푐 for product 푝 in period 푡  

휎  Standard deviation of inland customer’s demand 푐 for product 푝 in period 푡 

푓 (푑푒푚 ) Probability distribution function of inland customer’s demand 푐 for product 푝 in 
period 푡 

퐹 (푑푒푚 ) Cumulative distribution function of inland customer’s demand 푐 for product 푝 in 
period 푡 

휇  Expected value of outland customer’s demand 푐  for product 푝 in period 푡  
휎  Standard deviation of outland customer’s demand 푐 for product 푝 in period 푡 

푓 (푑푒푚 ) Probability distribution function of outland customer’s demand 푐  for product 푝 
in period 푡 

퐹 (푑푒푚 ) Cumulative distribution function of outland customer’s demand 푐  for product 푝 
in period 푡 

 
Constraints (14-16) and (17-19) are related to 
inland and outland customers’ demand in all time 
period, respectively. By using chance constraint 
technique, the probabilistic equation for Eq.16 
can be written as probabilistic inequality (36). 
 

푝 푃푆
∀

+ 퐵퐶 	 < 푑푒푚	

< 훼 ,			∀푐, 푝 

(36) 

 
Inequality (36) means that the possibility of 
nonfulfillment of constraint 14 is less than 훼 , 
where 훼 ∈ (0, 1) ; consequently, confidence 
level of Constraint 14 is 1 − 훼 .  
To convert Eq. 36 to a linear deterministic 
equivalent constraint, the following steps are  

 
written (Eqs. 37-39): 
 

푝 푃푆
∀

+퐵퐶 	 < 푑푒푚	

< 훼 ,			∀푐, 푝 
(37) 

푝 푑푒푚	 < 푃푆
∀

+퐵퐶 	

≥ 1 − 훼 ,			∀푐, 푝 
(38) 

푓 (푑푒푚 )
∑∀ 	

푑 	

≥ 1 − 훼 ,			∀푐, 푝 
(39) 

 
If 푓 (푥)  is probability distribution function 푥 , 
then ∫ 푓 (푥) 푑  is 퐹 (푐) , called cumulative 
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distribution function 푥. Consequently, Eq. 39 is 
converted to Eq. 40. 
 

퐹 ( 푃푆
∀

+ 퐵퐶 	 )	

≥ 1 − 훼 ,			∀푐, 푝 
(40) 

 
Herein, 푑푒푚 ~푁(휇 ,		 휎 ); therefore, 
Eq.44 can be rewritten as Eq.41: 
 

Φ
∑ 푃푆∀ + 퐵퐶 	 − 휇

휎
	

≥ 1 − 훼 ,			∀푐, 푝 
(41) 

Φ(푍)	 ≥ 1 − 훼 ,			∀푐, 푝 
Φ is standard normal distribution and a strictly 
increasing function on Z; hence, Eq.41 is 
converted to Eq. 42. 
 

∑ 푃푆∀ + 퐵퐶 	 − 휇
휎

	
≥ 푍 ,			∀푐, 푝 

(42) 

푃푆
∀

+ 퐵퐶 	

≥ 휎 .푍
+ 휇 ,			∀푐, 푝 

(43) 

The same steps are followed for other related 
constraints. Consequently, Eqs. 14-19 are 
replaced by Eqs. 43-48, respectively.  
 

푃푆
∀

+ 퐵퐶 	 − 퐵퐶 ( )
	

≥ 휎 .푍
+ 휇 ,			∀푐, 푝, 푡 > 1 

(44) 

푃푆
∀

−퐵퐶 ( )
	

≥ 휎 .푍
+ 휇 ,			∀푐, 푝	 

(45) 

푃푆
∀

+ 퐵퐶

≥ 휎 . 푍

+ 휇 ,			∀푐 , 푝 

(46) 

푃푆
∀

+ 퐵퐶 − 퐵퐶 ( )

≥ 휎 . 푍

+ 휇 ,			∀푐 , 푝, 푡 > 1 

(47) 

푃푆
∀

− 퐵퐶 ( )

≥ 휎 . 푍

+ 휇 ,			∀푐 , 푝 

(48) 

The intent is to provide a 95% confidence level 
for demand forecasting in all time periods. Thus, 
with considering 훼 = 0.05  in the above 
inequalities, the fulfillment of Eqs. 14-19 with a 
95% confidence level is ensured. 
 

4. Solution Approaches 
The introduced integrated model for the proposed 
supply chain network in the former section is a 
mixed integer programming model with several 
constraints. Solving these models in a reasonable 
time, especially in real world instances is main 
challenge in major part of researches. Generally, 
these models are hard to solve with applying 
traditional exact methods (39). In this section, we 
propose a novel meta-heuristic algorithm based 
on FA to achieve a near optimum solution for the 
proposed model. 
4-1. Proposed Selective Firefly Algorithm 
Firefly Algorithm (FA) is one of the swarm 
intelligence based algorithms that introduced by 
(40). FA is inspired from fireflies’ behavior in 
nature. A vital factor in fireflies’ life is brightness 
with several applications, such as warning 
predators and or showing its attractiveness for 
other fireflies. Amount of potency versus the 
predators and attractiveness value for others 
depend on the light intensity, distance between 
insects and the light absorption by environment 
(41). To simplify the traits of fireflies in applying 
the FA, three rules are considered, as follows 
((42), (43), (44)):  
- Fireflies are considered unisex, thus the 
attractiveness of fireflies is regardless of the sex. 
- In the movement, less bright firefly move 
towards the brighter one.  
- Brightness of each firefly indicates the quality 
of solution. 
In standard FA, there are four important issues, 
consisting Light intensity, Attractiveness, 
Distance and Movement that are described as 
follows (41), (45). 
At first, initial solutions are calculated. If 
consider a population with 푁  members in a 퐷 
dimensions environment, each solution is 
represented as follows (Eq. 49).   

(49) 푥 = (푥 ,… , 푥 ),						for	푖 = 1,…	, 푁 
where 푥  is 푖 th solution in 퐷  dimensions 
environment. 
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Light Intensity represents the brightness of a 
firefly that is proportional to the objective 
function value and calculates using Eq. 50. 

(50) 퐼(푟) = 퐼 . 푒  
where 퐼(푟)  is light intensity of a firefly in 
distance 푟 , 퐼  is original light intensity, 푟 
indicates the distance between two fireflies and 훾 
is light absorption coefficient.  
Attractiveness of a firefly is a decreasing function 
with a reverse relation to the distance that is 
calculated as follows (Eq. 51). 
 

(51) 훽(푟) = 훽 . 푒  
 
where 훽(푟)  is attractiveness of a firefly in 
distance 푟  and 훽  is attractiveness at distance 
푟 = 0. 
The distance between two fireflies 푖 and 푗 with 푥  
and 푥  values is calculated according to Cartesian 
distance (Eq. 52).  
 

(52) 푟 = 푥 − 푥 = (푥 − 푥 )  

 
where 푟  is the distance between two fireflies, 푖 
and 푗,  with 푥  and 푥  values in a 퐷 -dimension 
environment. In the standard FA, the less bright 
firefly moves toward the brighter one. Assume 
that firefly 푖 is less bright than firefly 푗; then, a 
new position of firefly 푖  after moving toward 
firefly 푗 is determined using Eq. 53. 
 

(53) 푥 = 푥 + 훽 푒 (푥 − 푥 ) + α휀  
 
where 푥  is the new position of firefly 푖, α is the 
step size scaling factor, and 휀  is the random 
factor generated by a uniform distribution with a 
range from 0 to 1. 
In the optimization problems, each firefly is 
representative of a solution, and the light 
intensity of the firefly is equal to quality of the 
solution (46). In the first step, we have an initial 
population of fireflies that can be a random 
population. After that, two fireflies (two 
solutions) are compared and firefly with less 
brightness (weaker solution) moves toward 
brighter one (better solution). Then, all positions 
of fireflies are updated, and these steps continue 
until finishing the comparison of all fireflies. 
After generating the new population, these steps 
are repeated on the new population. The process 

is continued until satisfying the stop criterion. 
The proposed SFA in the current research is 
explained as follows. To apply the proposed 
SFA, initially, some random solutions are 
generated as the first population. Each solution 
with a definite fitness function value is assumed 
as a firefly with specified brightness. The firefly 
with the highest brightness is selected as the best 
solution in the current population. Then, the 
selected firefly moves randomly, and the 
brightness of new location is calculated. If 
improvement is achieved, firefly in the new 
location is transmitted to the next population. 
Otherwise, the best solution in the current 
population is copied to the next population. By 
employing this procedure, the best solution is 
preserved from one population to the next.  
In the proposed algorithm, we assume that each 
firefly estimates its brightness change before 
moving toward a better firefly. For this reason, 
initially, all better fireflies are identified and 
selected firefly moves toward them, implicitly. 
Then, brightness changes are calculated, and the 
best move is selected. After that, the firefly is 
moved toward better firefly that makes the best 
change, and the position of the moved firefly is 
updated. This way, we reduce the probability of 
generating worse solutions from one population 
to the next. 
These steps are continued for other fireflies until 
initial positions of all members are changed. 
Now, the first iteration is achieved and the best 
solution of the new population is denoted. All 
former steps are repeated until stop criterion is 
met.  
The pseudo code of the proposed SFA is 
illustrated as follows. To highlight the difference 
between proposed SFA and standard FA, the 
particular features of SFA are illustrated by gray 
color.  
Begin 
Generate fireflies for the initial population, 
randomly 푥  (푖 = 1,… , 푁)  
Calculate objective function 푓(푥 	) , 푥 =
(푥 ,… , 푥 )  
Consider 푓(푥 	) as brightness of firefly 푖 (퐼 ) 
Define light absorption coefficient (훾)  
While (t<Max Generation) 
For 푖 = 1: 푁 
Find the firefly with the highest brightness in the 
current population 
Exert a random movement on the current best 
firefly via (α휀 ) 
Calculate the firefly attractiveness after 
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movement via exp (−훾푟 ) 
If (퐼 > 퐼 ), replace the moved firefly with 
current best firefly;  
Transfer the moved firefly into the next 
population 
Else Copy the current best firefly into the next 
population 
End If 
For 푗 = 1:푁 
If (퐼 > 퐼 ), move firefly 푖 towards firefly 푗 in 퐷 
dimension; 
Calculate distance between fireflies 푖 and 푗 (푟) 
Calculate attractiveness via exp (−훾푟 ) 
Obtain firefly 푖  brightness and location after 
movement 
Reserve the new brightness and new location of 
firefly 푖, Temporarily 
Return the firefly 푖 to the primal location 
End If 
End For 푗 
Rank the brightness values obtained from several 
movements of firefly 푖 
Select optimal movement 
Record new location of firefly 푖 
Record new brightness of firefly 푖 
Update light intensity of firefly 푖 
End For 푖 
Rank the fireflies and find the current best 
End While 
Display process results and visualization 
End 
4-2. Penalty function 
Applying the proposed meta-heuristic may 
generate infeasible solutions. To control the 
infeasible solutions, a penalty function is 
designed that takes zero for feasible solutions and 
a large positive value for infeasible solutions. The 
penalty function of a solution x, called 푃(푥), for a 

constraint 푔(푥) ≤ 푏 is calculated with use of Eq. 
54 (47). 
 

푃(푥) = 푅 × max
푔(푥)
푏

− 1,0  
 
where R is a large positive number. The penalty 
value is added to the objective function value. 
 
4-3. The bi-objective feature 
There are several methods, such as Maxi-Min, 
LP-Metric, Weighting, and Lexicography, to 
transform bi-objective models to single-objective 
form. One of the popular methods for 
transforming the bi-objective models with 
conflicting objectives to single objective is LP-
metric (48), (49), (50). Therefore, in this paper, 
the LP-metric method is used to transform the 
proposed bi-objective problem to single-objective 
form. 
The purpose of this method is to minimize the 
whole weighted deviations from the optimal 
value of each objective function. The following 
equation is applied to analyze the fitness of a 
solution (Eq. 55).  
 

퐿푃 = 훾
푓∗ − 푓
푓∗

 

 
(55) 
 

 
where 푓  and 훾  are the value and weight of the jth 
objective, respectively. 푝 is known as a control 
parameter with integer values equal to or greater 
than 1 (51). If 푝 = ∞, the problem becomes the 
minimization of the maximal deviation (Eq. 56). 
 

퐿푃 = min max 훾
푓∗ − 푓
푓∗

, 훾
푓∗ − 푓
푓∗

, … , 훾
푓∗ − 푓
푓∗

 
 
(56) 

 
The problem can be presented as follows (Eq. 57-
58). 
 
푀푖푛	푣 
푠. 푡: 
푣 ≥ 훾

∗

∗ ,  	∀푗 

(57) 
 
 

(58) 
 

5. Computational Experiments 
To demonstrate the performance of SFA in 
solving the presented multi-stage PDN, several 
instances in different sizes are solved, and results 
of these algorithms are analyzed. Nine sets of 
small-sized and eight sets of large-sized instances 
are considered (table 1). 
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Tab. 1. Size of small and large instances 
Instan

ce 
n
o. 

(퐼) 
(퐽) 
no. 

(퐾) 
no. 

(퐷) 
no. 

(퐶) 
no. 

( 퐶
)

no. 

(푄) 
no. 

(푅) 
no. 

(푃) 
no. 

(푇) 
no. 

No. of 
Para
mete
rs  

No. of 
Variabl

es  

Small             
1 1 2 2 2 2 1 3 1 1 2 287 222 
2 1 2 2 3 3 1 3 2 1 2 415 320 
3 1 2 2 3 4 2 3 3 1 2 514 392 
4 2 2 3 2 4 2 3 4 1 2 551 426 
5 2 2 3 3 4 3 3 3 2 2 978 792 
6 2 3 2 4 4 3 3 4 2 2 1047 860 
7 2 2 3 4 5 3 3 3 2 2 1228 1000 
8 2 3 3 4 5 3 3 4 2 2 1355 1118 
9 3 3 2 4 5 3 3 3 2 3 1646 1431 
Large             
1 3 3 3 3 6 3 3 3 3 3 2287 1953 
2 3 3 4 3 6 4 3 3 3 3 2922 2505 
3 3 4 4 3 5 3 3 4 3 3 3396 3000 
4 4 5 4 4 5 3 3 3 4 3 4384 3960 
5 3 4 5 3 6 3 3 4 4 3 5324 4800 
6 4 5 3 4 6 5 3 3 5 3 5420 4870 
7 3 4 4 5 7 4 3 3 5 3 6681 6045 
8 4 5 5 5 7 5 3 4 6 3 12335 11418 

 
Each type of small- and large-sized instances is solved five times, summing up to 85 instances. The 
parameters’ values of both small- and large-sized problems with a concise description regarding generating 
the data range of each problem are presented in Table 2. 
 

Tab. 2. Parameters’ values for small and large sized instances 

Parameter Ranges of parameters  Description Small size Large size 

푟푡푖푚푒  u~[1600, 3000] u~[2800, 4800]  A data range of uniform 
distribution 

표푡푖푚푒	
	
 u~[160, 300] u~[280, 480]  10% of available regular 

time  
푝푡  u~[4.0, 8.5] u~[2.5, 8.0]  

Randomly generated 
(uniform distribution) 

푠푡  u~[18, 28] u~[13, 25]  
푠푐  u~[80, 115] u~[40, 150]  
푟푝	  u~[2, 10] u~[2, 9]  
푟푚푐  u~[4, 9] u~[4, 11]  

표푚푐  u~[4.8, 10.8] u~[5, 12]  120% of unit production 
cost at a regular time 

푙푡푝	 ~푁(휇 	 	, 휎 	 ) N~(u[4, 12],  
u[1, 2]) 

N~(u[3,15], 
u[1,3])  A data range of uniform 

distribution for each 
normal distribution 
factor of lead time with 
respect to the type of 
transportation system  

푙푡푝 ~푁(휇 	 	, 휎 	) N~(u[6, 15], 
u[2, 3]) 

N~(u[6, 18], 
u[2, 5])  

푙푡푝 ~푁(휇 		, 휎 	) N~(u[10, 20],  
u[2, 4]) 

N~(u[8, 22], 
u[3, 6])  

푙푡푝 ~푁(휇 		, 휎 	) N~(u[40, 80], 
u[3, 5]) 

N~(u[35, 90], 
u[4, 8])  

푎푡		 u~[20, 30] u~[25, 35]  Randomly generated 
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푎푡 	
	 u~[55, 70] u~[60, 80]  (uniform distribution) 

푟푓푡푐 	  u~[18, 30] u~[10, 30]  Randomly generated 
(uniform distribution) 푟푢푡푐	  u~[2, 5] u~[2, 7]  

푝푓푡푐
	
 u~[20, 50] u~[20, 50]  

Randomly generated 
(uniform distribution) 
with respect to the type 
of transportation 
system  

푝푢푡푐
	
 u~[3, 6] u~[3, 15]  

푝푓푡푐  u~[25, 60] u~[20, 55]  
푝푢푡푐  u~[2, 7] u~[4, 16]  
푝푓푡푐  u~[16, 60] u~[15, 60]  
푝푢푡푐  u~[3, 8] u~[5, 18]  
푝푓푡푐  u~[45, 100] u~[30, 80]  
푝푢푡푐  u~[8, 15] u~[8, 22]  
푣푟  u~[0.4, 0.5] u~[0.5, 1.0]  Randomly generated 

(uniform distribution) 푣푝  u~[1.0, 1.5] u~[1.0, 1.5]  
푑푒푚	 ~ 
푁(휇 	, 휎 ) 

N~(u[30, 55],  
u[3, 5]) 

N~(u[25, 65], 
u[5, 8])  

A data range of uniform 
distribution for each 
normal distribution 
factor of inland and 
outland customers’ 
demands 

푑푒푚 ~ 
푁(휇 , 휎 ) 

N~(u[140, 210],  
u[4, 6]) 

N~(u[120, 
220], 

u[6, 8]) 
 

ℎ푐푟  u~[1.5, 7.0] u~[1.5, 11.5]  

Randomly generated 
(uniform distribution) 

ℎ푐푝	  u~[3.5, 8.5] u~[4.0, 9.5]  
ℎ푐푝

	
	 u~[5, 10] u~[5, 13]  

푛푢  u~[0, 2] u~[0, 2]  
푐푎푝푣 u~[15, 20] u~[15, 20]  
푐푎푝푓  u~[300, 450] u~[300, 450]  
푐푎푝푟  u~[430, 550] u~[430, 550]  
푎푐푐  u~[35, 60] u~[35, 80]  
푝푟 	  u~[1700, 2200] u~[1900, 3500]  Randomly generated 

(uniform distribution) 
with respect to the time 
period 

푝푟  u~[2100, 2700] u~[2500, 4000]  

푏표푐	  u~[10, 20] u~[10, 20]  With respect to priority of 
customers 푏표푐  u~[5, 10] u~[5, 10]  

 
In order to gain suitable results in several 
instances, the parameters of applied algorithms 
should be tuned. The FA and SFA parameters 
include population size (푁 ), step size scaling 
( 훼 ), light absorption coefficient ( 훾 ), and 
attractiveness (훽). To optimize the performance 
of the algorithms, we consider a specified range 
for each parameter and solve several instances 
with regard to different values of each parameter. 
We apply response surface methodology (RSM) 
introduced by (52) to tune these parameters. The 
parameters in different sized instances in all 
considered algorithms are assumed with the same  
 

 
weight. MINITAB V.16.1.0 software is used to 
obtain the optimal values of FA and SFA 
parameters used to perform the numerical 
experiments. The optimal values of FA and SFA 
parameters obtained by using RSM are given in 
Table 3.  The algorithms, FA and SFA, are coded 
in MATLAB R2013b v.8 2.0.70.1 and run on a 
Pentium IV 2.8 GHz processor with 4 GB 
memory. All considered algorithms are 
converged in specified iterations. The 
convergence charts of FA and SFA GA regarding 
a same problem are illustrated in Fig. 2 (a-b), 
respectively. 
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Tab. 3. Tuned parameters of FA and SFA 

Instance no. FA     SFA    
푁  훼 훾 훽  푁  훼 훾 훽 

Small          
1 90.30 0.53 1.50 0.53  52.12 0.60 0.60 0.89 
2 90.51 0.60 0.50 0.85  52.32 0.60 0.60 1.13 
3 100.00 0.60 1.50 1.03  60.00 0.60 0.60 1.60 
4 100.00 0.60 0.80 0.50  64.55 0.43 0.60 0.60 
5 109.50 0.45 0.50 1.50  70.00 0.60 0.60 0.60 
6 120.00 0.54 0.55 1.50  70.00 0.60 1.60 1.60 
7 110.00 0.60 0.50 0.83  70.91 0.37 1.60 0.60 
8 110.00 0.56 0.50 0.50  70.71 0.45 0.60 0.60 
9 122.12 0.60 0.50 1.04  69.70 0.43 0.60 0.60 

Large          
1 130.00 0.70 0.50 0.50  75.00 0.60 1.60 0.60 
2 130.00 0.70 0.50 0.61  75.00 0.42 0.60 0.60 
3 150.00 0.70 0.50 0.99  85.00 0.60 1.60 0.60 
4 170.00 0.70 0.50 1.50  93.74 0.60 0.60 1.14 
5 190.00 0.56 0.50 0.50  100.00 0.60 0.60 1.07 
6 190.00 0.59 0.50 1.01  91.52 0.60 0.60 1.11 
7 200.00 0.62 0.50 0.50  100.00 0.60 1.60 0.60 
8 212.93 0.59 0.50 1.50  120.00 0.55 1.04 0.94 

 

(a) FA (b) SFA 
Fig. 2. The convergence charts of FA and SFA

 
To compare the effectiveness of the proposed 
algorithms, two indices including relative 
percentage deviation (푅푃퐷 ) and improvement 
percentage (퐼푃) are used. To calculate 푅푃퐷 value 
for an objective function with minimization type, 
Eq. 59 is applied (1). 
 

푅푃퐷 =
푓 − 푓

푓
× 100 

(59) 

 
where 푓  and 푓  are solution of the 
minimization objective function in bi-objective 
form and the optimal solution if the problem is 
solved in single-objective manner for a given 
instance, respectively. 
The 퐼푃 index is introduced by (34) to compare  

 
the performances of two algorithms. The 퐼푃 
formula is presented in Eq. 60. 
 

퐼푃 =
(퐴푙푔 − 퐴푙푔 )

퐴푙푔
× 100 (60) 

 

where 퐼푃  is improvement percentage of 
minimization objective function, and 퐴푙푔  and 
퐴푙푔  are the proposed form of an algorithm 
and classical form of the algorithm, respectively. 
Table 4 summarizes the consequences of 
experiments obtained by using each method for 
different small- and large-sized instances. The 
first part of the table shows RPD values obtained 
by using LINGO Global Solver. LINGO is able 
to solve small-sized instances in a reasonable 
amount of time (between 10 to 5000 seconds); 
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however, it is unable to obtain any feasible 
solutions after elapsing more than 5000 seconds 
in large-sized instances. Table 5 illustrates gained 
improvement in output of each objective function 

by using algorithm SFA. The average of ܲܫ 
gained with solving several small- and large-
sized instances is presented in the last row. 

 

Tab. 4. RPD values of small and large-sized instances 
Instanc

e 
no
. 

 LINGO  FA  SFA  

௦௧݊݅ܯ  ௗ௧݊݅ܯ ௦௧݊݅ܯ  ௗ௧݊݅ܯ ௦௧݊݅ܯ  ௗ௧݊݅ܯ  

Small           
1  7.03 25.48  19.80 33.01  14.96 22.09  
2  12.09 10.36  40.98 34.19  40.94 21.36  
3  10.28 25.27  22.06 76.22  20.78 53.68  
4  8.77 20.46  19.58 67.82  17.48 50.26  
5  10.77 25.31  9.80 55.48  9.13 50.43  
6  50.20 18.71  9.54 60.97  7.73 52.73  
7  10.65 27.43  5.89 56.74  8.39 44.12  
8  9.34 21.80  13.16 55.04  7.04 49.83  
9  18.50 16.72  7.56 70.65  3.63 60.55  
Large           
1  - -  3.22 47.70  4.10 18.92  
2  - -  2.88 52.76  0.56 21.47  
3  - -  6.03 47.64  4.60 25.93  
4  - -  17.87 31.35  15.53 24.77  
5  - -  20.08 30.71  13.92 25.16  
6  - -  19.55 45.86  18.97 39.30  
7  - -  22.68 61.82  22.40 49.24  
8  - -  21.32 60.59  21.55 47.37  
 

Tab. 5. ࡼࡵ values gained from SFA 

Instance no.  ܲܫ with using SFA Mean of ݊݅ܯ  ܲܫ௦௧ ݊݅ܯௗ௧ 
Small     
1  6.03% 8.94% 7.49% 
2  0.08% 10.58% 5.33% 
3  1.64% 14.67% 8.15% 
4  2.61% 11.69% 7.15% 
5  0.74% 3.35% 2.05% 
6  2.00% 5.40% 3.70% 
7  -2.66% 8.76% 3.05% 
8  7.04% 3.47% 5.26% 
9  4.24% 6.29% 5.27% 
Large     
1  -0.91% 24.19% 11.64% 
2  2.39% 25.76% 14.08% 
3  1.53% 17.25% 9.39% 
4  2.85% 5.27% 4.06% 
5  7.70% 4.43% 6.07% 
6  0.72% 4.71% 2.71% 
7  0.36% 8.43% 4.39% 
8  -0.29% 8.97% 4.34% 
Average  2.12% 10.13% 6.12% 
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The results of the algorithms are analyzed by 
applying t-test with confidence level %95 by 
MINITAB V.16.1 software. The normality test is 
examined by Kolmogorov-Smirnov approach by 
MINITAB V.16.1 software. The equality of 
variances is examined. The hypothesis test of 
algorithms FA and SFA is as follows. 
 
ℎ :	휇 = 휇
ℎ :	휇 ≠ 휇  

 
where 휇 , 휇  are the average RPD values of 
FA and SFA, respectively. 
In accordance with the results gained from the 
dependent t-test (comparing FA and SFA), t 
value and p value are calculated as 1.73 and 

0.047, respectively. Regarding the obtained 
values of p value in the t-test as lower than 0.050 
and t value greater than 푡 . , , null hypotheses 
of two t tests are rejected with %95 confidence 
level. It proves the significant difference between 
RPD values obtained from different algorithms.  
Fig. 3 illustrates the average RPD of two 
objective functions ( 푀푖푛  and 푀푖푛 ) 
related to several  problems. In both small- and 
large-sized instances, quality improvement of 
solutions with applying SFA is sensible in most 
cases. Therefore, for solving these types of 
mathematical models specially, in large-sized 
instances, applying SFA instead of classical FA 
can be useful to achieve better solutions. 

  
(a) Small-sized instances (b) Large-sized instances 

Fig. 3. Integrated RPD values of FA and SFA
 

6. Conclusion 
This paper investigated a comprehensive 
international PDN with multiple potential 
entrepots for collecting and transferring the 
products to retailers and customers. There are 
multiple transportation systems with different 
delivery lead times. Therefore, it can be 
applicable for industries that have several 
products with different sensitivities. The problem 
was formulated as a MILP model. The 
customers’ demands and delivery lead time in the 
proposed network were assumed under 
uncertainty with stochastic form. Chance-
constraint technique was applied to convert the 
probabilistic model to deterministic form. To 
investigate the performance of the proposed 
model, several sized instances were designed, and 
a novel proposed algorithm based on FA called 
SFA was introduced to solve the model. In the 
proposed SFA, each fire fly handles a selective 
procedure before moving toward better fire flies. 
It means that each fire fly selects several fire flies 
and predicts its next position after moving and,  

 
then, selects the best firefly that makes the most 
improvement. The results show the improvement 
the performance of the proposed algorithm as 
compared to the classical form. 
As a direction for future research, it could be 
interesting to develop other metaheuristic 
methods and compare them with SFA. Another 
aspect of this research could be considering 
discount depending on the quantity of customers’ 
orders. In addition, a separate objective function 
to minimize the greenhouse gases omission 
through the network can be utilized in the future 
researches.  
 

References 
[1] Khalifehzadeh S, Seifbarghy M, Naderi B. 

A four-echelon supply chain network 
design with shortage: Mathematical 
modeling and solution methods. Journal of 
Manufacturing Systems.; Vol. 35, (2015), 
pp. 164-75. 

 
[2] Aggarwal R, Singh S. Chance constraint-

20%
30%
40%
50%
60%
70%
80%
90%

100%
RPD %

Small 
Instances

FA

SFA

10%

15%

20%

25%

30%

35%

40%

45%
RPD %

Large
Instances

FA

SFA



396 Sasan Khalifehzadeh & Mohammad Bagher 
Fakhrzad * 

A Stochastic Bi-Objective Mathematical Model for 
Optimizing a Production and Distribution System with 
Stochastic Demand and Stochastic Lead Time 

 

International Journal of Industrial Engineering & Production Research, September 2018, Vol. 29, No. 3 

based multi-objective stochastic model for 
supplier selection. The International 
Journal of Advanced Manufacturing 
Technology.;Vol. 79, Nos. 9-12, (2015), 
pp. 1707-1719. 

 
[3] Altiparmak F, Gen M, Lin L, Paksoy T. A 

genetic algorithm approach for multi-
objective optimization of supply chain 
networks. Computers & Industrial 
Engineering. Vol. 51, No. 1, (2006), pp. 
196-215. 

 
[4] Boudia M, Louly MAO, Prins C. A 

reactive GRASP and path relinking for a 
combined production–distribution 
problem. Computers & Operations 
Research. Vol. 34, No. 11, (2007), pp. 
3402-19. 

 
[5] Thanh PN, Bostel N, Péton O. A dynamic 

model for facility location in the design of 
complex supply chains. International 
Journal of Production Economics. Vol. 
113, No. 2, (2008), pp. 678-693. 

 
[6] Kazemi A, Fazel Zarandi MH, Moattar 

Husseini SM. A multi-agent system to 
solve the production–distribution planning 
problem for a supply chain: a genetic 
algorithm approach. The International 
Journal of Advanced Manufacturing 
Technology. Vol. 44, No. 1, (2009), pp. 
180-93. 

 
[7] Calvete HI, Galé C. A Multiobjective 

Bilevel Program for Production-
Distribution Planning in a Supply Chain. 
In: Ehrgott M, Naujoks B, Stewart TJ, 
Wallenius J, editors. Multiple Criteria 
Decision Making for Sustainable Energy 
and Transportation Systems: Proceedings 
of the 19th International Conference on 
Multiple Criteria Decision Making, 
Auckland, New Zealand, 7th - 12th 
January 2008. Berlin, Heidelberg: Springer 
Berlin Heidelberg; (2010), pp. 155-165. 

 
[8] Peidro D, Mula J, Jiménez M, del Mar 

Botella M. A fuzzy linear programming 
based approach for tactical supply chain 
planning in an uncertainty environment. 

European Journal of Operational Research. 
Vol. 205, No. 1, (2010), pp. 65-80. 

 
[9] Cardona-Valdés Y, Álvarez A, Ozdemir 

D. A bi-objective supply chain design 
problem with uncertainty. Transportation 
Research Part C: Emerging 
Technologies.;Vol. 19, No. 5, (2011), pp. 
821-832. 

 
[10] Wang K-J, Makond B, Liu SY. Location 

and allocation decisions in a two-echelon 
supply chain with stochastic demand – A 
genetic-algorithm based solution. Expert 
Systems with Applications. Vol. 38, No. 5, 
(2011), pp. 6125-6131. 

 
[11] Amorim P, Günther HO, Almada-Lobo B. 

Multi-objective integrated production and 
distribution planning of perishable 
products. International Journal of 
Production Economics. Vol. 138, No. 1, 
(2012), pp. 89-101. 

 
[12] Kadadevaramath RS, Chen JCH, Latha 

Shankar B, Rameshkumar K. Application 
of particle swarm intelligence algorithms 
in supply chain network architecture 
optimization. Expert Systems with 
Applications. Vol. 39, No. 11, (2012), pp. 
10160-10176. 

 
[13] Varthanan PA, Murugan N, Kumar GM. A 

simulation based heuristic discrete particle 
swarm algorithm for generating integrated 
production–distribution plan. Applied Soft 
Computing. Vol. 12, No. 9, (2012), pp. 
3034-3050. 

 
[14] Zamarripa M, Silvente J, Espuña A. 

Supply Chain Planning under Uncertainty 
using Genetic Algorithms. In: Bogle IDL, 
Fairweather M, editors. Computer Aided 
Chemical Engineering. 30: Elsevier; 
(2012), pp. 457-461. 

 
[15] Bilgen B, Çelebi Y. Integrated production 

scheduling and distribution planning in 
dairy supply chain by hybrid modelling. 
Annals of Operations Research. Vol. 211, 
No. 1, (2013), pp. 55-82. 

 



397 Sasan Khalifehzadeh & Mohammad 
Bagher Fakhrzad 

A Stochastic Bi-Objective Mathematical Model for Optimizing 
a Production and Distribution System with Stochastic 
Demand and Stochastic Lead Time 
 

International Journal of Industrial Engineering & Production Research, September 2018, Vol. 29, No. 3 

[16] Kumar SK, Tiwari MK. Supply chain 
system design integrated with risk pooling. 
Computers & Industrial Engineering. Vol. 
64, No. 2, (2013), pp. 580-588. 

 
[17] Latha Shankar B, Basavarajappa S, Chen 

JCH, Kadadevaramath RS. Location and 
allocation decisions for multi-echelon 
supply chain network – A multi-objective 
evolutionary approach. Expert Systems 
with Applications. Vol. 40, No. 2, (2013), 
pp. 551-562. 

 
[18] Liu S, Papageorgiou LG. Multiobjective 

optimisation of production, distribution 
and capacity planning of global supply 
chains in the process industry. Omega. 
Vol. 41, No. 2, (2013), pp. 369-382. 

 
[19] Nasiri GR, Zolfaghari R, Davoudpour H. 

An integrated supply chain production–
distribution planning with stochastic 
demands. Computers & Industrial 
Engineering. Vol. 77, (2014), pp. 35-45. 

 
[20] Bashiri M, Rezaei H. Reconfiguration of 

Supply Chain: A Two Stage Stochastic 
Programming. International Journal of 
Industiral Engineering & Producion 
Research. Vol. 24, No. 1, (2013), pp. 47-
58. 

 
[21] Abraham AJ, Kumar KR, Sridharan R, 

Singh D. A Genetic Algorithm Approach 
for Integrated Production and Distribution 
Problem. Procedia - Social and Behavioral 
Sciences. Vol. 189, (2015), pp. 184-92. 

 
[22] Ghodratnama A, Tavakkoli-Moghaddam 

R, Ghodratnama Baboli Vahdani A, 
Vahdani B. A Robust Optimization 
Approach for a p-Hub Covering Problem 
with Production Facilities, Time Horizons 
and Transporter. International Journal of 
Industiral Engineering & Producion 
Research. Vol. 25, No. 4, (2014), pp. 317-
31. 

 
[23] Alizadeh Afrouzy Z, Nasseri SH, Mahdavi 

I, Paydar MM. A fuzzy stochastic multi-
objective optimization model to configure 
a supply chain considering new product 

development. Applied Mathematical 
Modelling. Vol. 40, No. 17, (2016), pp. 
7545-7570. 

 
[24] Sadeghian R. Dynamic Inventory Planning 

with Unknown Costs and Stochastic 
Demand. International Journal of 
Industiral Engineering & Producion 
Research. Vol. 27, No. 2, (2016), pp. 179-
187. 

 
[25] Hosseini-Motlagh S-M, Cheraghi S, 

Ghatreh Samani M. A ROBUST 
OPTIMIZATION MODEL FOR BLOOD 
SUPPLY CHAIN NETWORK DESIGN. 
International Journal of Industiral 
Engineering & Producion Research. Vol. 
27, No. 4, (2016), pp. 425-44. 

 
[26] Birim Ş. Vehicle Routing Problem with 

Cross Docking: A Simulated Annealing 
Approach. Procedia - Social and 
Behavioral Sciences. Vol. 235, 
(Supplement C), (2016), pp. 149-158. 

 
[27] Chan FTS, Jha A, Tiwari MK. Bi-

objective optimization of three echelon 
supply chain involving truck selection and 
loading using NSGA-II with heuristics 
algorithm. Applied Soft Computing. Vol. 
38, (Supplement C), (2016), pp. 978-987. 

 
[28] Fathian M, Jouzdani J, Heydari M, Makui 

A. Location and transportation planning in 
supply chains under uncertainty and 
congestion by using an improved 
electromagnetism-like algorithm. Journal 
of Intelligent Manufacturing. (2016), pp. 
1-18. 

 
[29] Ma Y, Yan F, Kang K, Wei X. A novel 

integrated production-distribution planning 
model with conflict and coordination in a 
supply chain network. Knowledge-Based 
Systems. Vol. 105, (Supplement C): 
(2016), pp. 119-133. 

 
[30] Govindan K, Fattahi M. Investigating risk 

and robustness measures for supply chain 
network design under demand uncertainty: 
A case study of glass supply chain. 
International Journal of Production 



398 Sasan Khalifehzadeh & Mohammad Bagher 
Fakhrzad * 

A Stochastic Bi-Objective Mathematical Model for 
Optimizing a Production and Distribution System with 
Stochastic Demand and Stochastic Lead Time 

 

International Journal of Industrial Engineering & Production Research, September 2018, Vol. 29, No. 3 

Economics. Vol. 183, (Part C), (2017), pp. 
680-699. 

 
[31] Hasani A. Two-stage Stochastic 

Programing Based on the Accelerated 
Benders Decomposition for Designing 
Power Network Design under Uncertainty. 
International Journal of Industiral 
Engineering & Producion Research. Vol. 
28, No. 2, (2017), pp. 163-174. 

 
[32] Jabbarzadeh A, Fahimnia B, Sheu J-B. An 

enhanced robustness approach for 
managing supply and demand 
uncertainties. International Journal of 
Production Economics. Vol. 183, (2017), 
pp. 620-631. 

 
[33] Fahimnia B, Davarzani H, Eshragh A. 

Planning of complex supply chains: A 
performance comparison of three meta-
heuristic algorithms. Computers & 
Operations Research. Vol. 89, 
(Supplement C), (2018), pp. 241-252. 

 
[34] Jamrus T, Chien C-F, Gen M, Sethanan K. 

Multistage production distribution under 
uncertain demands with integrated discrete 
particle swarm optimization and extended 
priority-based hybrid genetic algorithm. 
Fuzzy Optimization and Decision Making. 
Vol. 14, No. 3, (2015), pp. 265-287. 

 
[35] Charnes A, Cooper WW. Deterministic 

Equivalents for Optimizing and Satisficing 
under Chance Constraints. Operations 
Research. Vol. 11, No. 1, (1963), pp. 18-
39. 

 
[36] Pal S, Mahapatra G. A manufacturing-

oriented supply chain model for imperfect 
quality with inspection errors, stochastic 
demand under rework and shortages. 
Computers & Industrial Engineering.Vol. 
106, (2017), pp. 299-314. 

 
[37] Rakes TR, Franz LS, James Wynne A. 

Aggregate production planning using 
chance-constrained goal programming. 
The International Journal of Production 
Research. Vol. 22, No. 4, (1984), pp. 673-
684. 

[38] Taleizadeh AA, Niaki STA, Wee H-M. 
Joint single vendor–single buyer supply 
chain problem with stochastic demand and 
fuzzy lead-time. Knowledge-Based 
Systems. Vol. 48, (2013), pp. 1-9. 

 
[39] Fathian M, Jouzdani J, Heydari M, Makui 

A. Location and transportation planning in 
supply chains under uncertainty and 
congestion by using an improved 
electromagnetism-like algorithm. Journal 
of Intelligent Manufacturing. (2016). 

 
[40] Yang X-S, editor Firefly algorithms for 

multimodal optimization. International 
symposium on stochastic algorithms; 
(2009), Springer. 

 
[41] Fister Jr I, Perc M, Kamal SM, Fister I. A 

review of chaos-based firefly algorithms: 
perspectives and research challenges. 
Applied Mathematics and Computation. 
Vol. 252, (2015), pp. 155-165. 

 
[42] Yang X-S. Firefly algorithm, stochastic 

test functions and design optimisation. 
International Journal of Bio-Inspired 
Computation. Vol. 2, No. 2, (2010), pp. 
78-84. 

 
[43] Yang X-S. Nature-inspired metaheuristic 

algorithms: Luniver press; (2010). 
 
[44] Gupta A, Padhy P. Modified Firefly 

Algorithm based controller design for 
integrating and unstable delay processes. 
Engineering Science and Technology, an 
International Journal. Vol. 19, No. 1, 
(2016), pp. 548-558. 

 
[45] Yu S, Zhu S, Ma Y, Mao D. A variable 

step size firefly algorithm for numerical 
optimization. Applied Mathematics and 
Computation. Vol. 263, (2015), pp. 214-
220. 

 
[46] Yang X-S. Multiobjective firefly 

algorithm for continuous optimization. 
Engineering with Computers. Vol. 29, No. 
2, (2013), pp. 175-184. 

 
[47] Yeniay Ö. Penalty function methods for 



399 Sasan Khalifehzadeh & Mohammad 
Bagher Fakhrzad 

A Stochastic Bi-Objective Mathematical Model for Optimizing 
a Production and Distribution System with Stochastic 
Demand and Stochastic Lead Time 
 

International Journal of Industrial Engineering & Production Research, September 2018, Vol. 29, No. 3 

constrained optimization with genetic 
algorithms. Mathematical and 
Computational Applications. Vol. 10, No. 
1, (2005), pp. 45-56. 

 
[48] Mazdeh MM, Zaerpour F, Zareei A, 

Hajinezhad A. Parallel machines 
scheduling to minimize job tardiness and 
machine deteriorating cost with 
deteriorating jobs. Applied Mathematical 
Modelling. Vol. 34, No. 6, (2010), pp. 
1498-1510. 

 
[49] Mirzapour Al-e-hashem SMJ, Malekly H, 

Aryanezhad MB. A multi-objective robust 
optimization model for multi-product 
multi-site aggregate production planning 
in a supply chain under uncertainty. 
International Journal of Production 
Economics.;Vol. 134, No. 1, (2011), pp. 
28-42. 

 

[50] Khalifehzadeh S, Seifbarghy M, Naderi B. 
Solving a fuzzy multi objective model of a 
production–distribution system using 
meta-heuristic based approaches. Journal 
of Intelligent Manufacturing. Vol. 28, No. 
1, (2017), pp. 95-109. 

 
[51] Opricovic S, Tzeng G-H. Compromise 

solution by MCDM methods: A 
comparative analysis of VIKOR and 
TOPSIS. European Journal of Operational 
Research. Vol. 156, No. 2, (2004), pp. 
445-55. 

 
[52] Myers RH, Montgomery DC, Vining GG, 

Borror CM, Kowalski SM. Response 
surface methodology: a retrospective and 
literature survey. Journal of quality 
technology. Vol. 36, No. 1, (2004), p. 53. 

 

Follow This Article at The Following Site 
 
Khalifehzadeh S., Fakhrzad M B. A stochastic multi objective mathematical model to 
optimize a production and distribution system with stochastic demand and stochastic 
lead time. IJIEPR. 2018; 29 (3) :377-399 
URL: http://ijiepr.iust.ac.ir/article-1-833-en.html 

 

 
 

 


